Shadow Price \& Sensitivity Analysis

Interpreting Solver outputs

Susana Barreiro
3 March 2021

Shadow prices

Max $Z=3 x_{1}+5 x_{2}$
Subject to:

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1} \geq 0 ; \quad x_{2} \geq 0
\end{aligned}
$$

And

X1 number of window batch; X2 number of glass doors batch Profit of windows batch $=3$ profit of doors batch $=5(\mathrm{~K} €)$

Plant 1- produces the aluminum frames (prod. time available $=4 \mathrm{~h} /$ week)
Plant 2- produces the wood frames (prod. time available =12)
Plant 3- produces the glass and assembles the product (prod. time available = 18)

Resources - the production capacity of each Plant made available (R1, R2, R3), where bi (RHS) represents the hours of production time per week

x 1	x 2
0	0

The Excel Formulation

	Constraint coeff.		Total	$<=$$<=$	RHS
S1	1		0		4
S2		2	0		12
S3	3	2	0	<	18

$$
Z=3 x_{1}+5 x_{2}
$$

Subject to：

Shadow prices

An example of how to solve this LP problem in Excel
Solver Parameters

Change Constraint
\times

	Constraint coeff．		Total		RHS
S1	1		0	＜＝	4
S2		2	0	＜＝	12
S3	3	2	0	＜$=$	18
\times	x1	x 2			
	0	0			0

Constraint：

闌 $<$
 \＄AA\＄8：\＄AA\＄10 \square最界 selected in one step

The Excel Formulation

And

$$
3 x_{1}+2 x_{2} \leq 18
$$

$x_{1} \leq 4$
$2 x_{2} \leq 12$
$x_{1} \geq 0 ; \quad x_{2} \geq 0$

Because all the constraint signs are the same， constraint coeff．and their respective RHS can be

When each of the constraints has different signs， these must be added one by one．

Shadow prices

Subject to:

	x_{1}
	≤ 4
$2 x_{2}$	≤ 12
$3 x_{1}+2 x_{2}$	≤ 18
And $\quad x_{1} \geq 0 ; \quad x_{2} \geq 0$	

Max		
Objective function:		
x 1	x 2	Z
$\mathbf{3}$	$\mathbf{5}$	0

Solver found a solution. All Constraints and optimality conditions are satisfied.

When the GRG engine is used, Solver has found at least a local optimal solution. When simplex LP is used, this means Solver has found a global optimal solution.

Shadow prices

Max Time Unlimited, Iterations Unlimited, Precision 0.000001
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1\%

Objective Cell (Max)			
Cell	Name	Original Value	Final Value
$\$ \mathrm{Y} 11$	Total	0	36

Variable Cells

Cell	Name	Original Value	Final Value	Integer
$\$ W \$ 4$	$\mathrm{~S} 3 \times 1$	0	2 Contin	
$\$ \mathrm{X} \$ 4$	$\mathrm{~S} 3 \times 2$	0	6 Contin	

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
$\$ Y \$ 7$	S1 Total	$2 \$ Y \$ 7<=\$ A A \$ 7$	Not Binding	2	
$\$ Y \$ 8$	S2 Total	$12 \$ Y \$ 8<=\$ A A \$ 8$	Binding	0	
$\$ Y \$ 9$	S3 Total	$18 \$ Y \$ 9<=\$ A A \$ 9$	Binding	0	
$\$ W \$ 4$	S3 x1	$2 \$ W \$ 4>=0$	Not Binding	2	
$\$ \$ 4$	S3 $\times 2$	$6 \$ X \$ 4>=0$	Not Binding	6	

Shadow prices

Max Time Unlimited, Iterations Unlimited, Precision 0.000001
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1\%

Objective Cell (Max)			
Cell	Name	Original Value	Final Value
$\$ \mathrm{Y} \$ 11$	Total	0	36

Variable Cells						
Cell	Name	Original Value	Final Value	Integer		
$\$ W \$ 4$	$\mathrm{~S} 3 \times 1$	0	2 Contin			
$\$ X \$ 4$	$\mathrm{~S} 3 \times 2$	0	6 Contin			

Shadow prices

Shadow prices

Objective Cell (Max)		
Cell	Name	Original Value
$\$ \mathrm{Final}$ Value		
$\$ 11$	Total	0

The Analysis Report indicates:

- The Objective Cell table tells us the starting value of the objective function (Z) when Solver was applied and the optimal value after Solver
- The Variables Cells shows the values of the decision variables (x1, x2) for the initial solution and the optimal solution
- The Constraints table provides information regarding the restrictions applied to each of the decision variables and resources (Formula), providing indication on which are the limiting resources (the binding constraints that will have a positive shadow price, but not the shadow price value)
- The initial and optimal solutions (x1, x2, S1, S2) can be read across tables

Shadow prices

Objective Cell (Max) Cell Name Original Value $\$ \mathrm{Final}$ Value $\$ 11$ Total 0

For more detailed information e.g (the shadow prices) a different option of the Reports should be selected: Sensitivity Analysis

Sensitivity Analysis

The basic idea of Sensitivity Analysis is to be able to give answers to questions such as:

1. If the objective function changes, how does the solution change?
2. If resources available change, how does the solution change?
3. If a constraint is added to the problem, how does the solution change?

Sensitivity Analysis

The basic idea of Sensitivity Analysis is to be able to give answers to questions such as:

1. If the objective function changes, how does the solution change?
2. If resources available change, how does the solution change?
3. If a constraint is added to the problem, how does the solution change?
(We will just focus on the first 2)

Sensitivity Analysis

The basic idea of Sensitivity Analysis is to be able to give answers to questions such as:

1. If the objective function changes, how does the solution change?
2. If resources available change, how does the solution change?
3. If a constraint is added to the problem, how does the solution change?
(We will just focus on the first 2)

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
$\operatorname{Max} \quad Z=3 \mathbf{x}_{1}+5 \mathbf{x}_{2}$
Subject to:

$$
\begin{array}{rl|c}
x_{1} & \leq 4 \\
2 x_{2} & \leq & 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{array}
$$

$x_{1}, x_{2} \geq 0$

Variable Cells						
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$W\$4	S3 $\times 1$	2	0	3	4.5	3
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3
Constraints						
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2
\$Y\$8	S2 Total	12	1.5	12	6	6
\$Y\$9	S3 Total	18	1	18	6	6

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($x 1, \mathrm{X} 2$) in the objective function leads to $Z=3^{*} 2+5^{*} 6=36$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($x 1, \mathrm{X} 2$) in the objective function leads to $Z=\mathbf{3}^{*} 2+\mathbf{5}^{*} 6=36$
- The allowable increase and decrease show how much the coeff. of the objective function can change before the optimal solution has to be altered

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($x 1, \mathrm{X} 2$) in the objective function leads to $Z=3^{*} 2+5^{*} 6=36$

Variable Cells							Upper Limit 7.5	Lower Limit
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	+ 4.5	3		0
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3		
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease		
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2		
\$Y\$8	S2 Total	12	1.5	12	6	6		
\$Y\$9	S3 Total	18	1	18	6	6		

Since the Allowable Increase for X 1 is 4.5 this means that if we increase the objective function coeff. for $x 1$ up to an Upper Limit of 7.5 the optimal solution will not change $(2,6)$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($\mathrm{x} 1, \mathrm{X} 2$) in the objective function leads to $Z=\mathbf{3}^{*} 2+\mathbf{5}^{*} 6=36$

Variable Cells						
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$W\$4	S3 x1	2	0	3	4.5	3
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3
Constraints						
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2
\$Y\$8	S2 Total	12	1.5	12	6	6
\$Y\$9	S3 Total	18	1	18	6	6

Since the Allowable Increase for X 1 is 4.5 this means that if we increase the objective function coeff. for x1 up to an Upper Limit of 7.5 the optimal solution will not change $(2,6)$

Excel usually represents very big numbers by $1 \mathrm{E}+30$ which can be seen as infinity

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($x 1, \mathrm{X} 2$) in the objective function leads to $Z=\mathbf{3}^{*} 2+\mathbf{5}^{*} 6=36$

Variable Cells							Upper Limit	Lower Limit
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3	7.5	0
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3	$+\infty$	2
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease		
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2		
\$Y\$8	S2 Total	12	1.5	12	6	6		
\$Y\$9	S3 Total	18	1	18	6	6		

So, what will happen if the coeff. of X1 increases to $\mathbf{1 0}$?

- It will fall outside the allowable interval, thus the optimal solution will change (Final Values)

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

Max $Z=\mathbf{3} \mathbf{x}_{\mathbf{1}} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($\mathrm{x} 1, \mathrm{X} 2$) in the objective function leads to $Z=3^{*} 2+5^{*} 6=36$

Variable Cells							Upper Limit	Lower Limit
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3	7.5	0
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3	$+\infty$	2
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease		
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2		
\$Y\$8	S2 Total	12	1.5	12	6	6		
\$Y\$9	S3 Total	18	1	18	6	6		

So, what will happen if the coeff. of $\mathbf{X 1}$ increases to $\mathbf{1 0}$?

- It will fall outside the allowable interval, thus the optimal solution will change (Final Values)

And what will happen if the coeff. of $\mathbf{X 1}$ increases to $\mathbf{6}$?

- The optimal solution will remain optimal but $Z=6 * 2+5 * 6=42$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($x 1, \mathrm{X} 2$) in the objective function leads to $Z=3^{*} 2+5^{*} 6=36$

Variable Cells						
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$W\$4	S3 $\times 1$	2	0	4-3	= $1 \quad 4.5$	3
\$X\$4	S3 $\times 2$	6	0		-4 =1 1E+30	3
Constraints						
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2
\$Y\$8	S2 Total	12	1.5	12	6	6
\$Y\$9	S3 Total	18	1	18	6	6

And what will happen if both coeff. X1 and X2 change to 4 (simultaneous changes)?

- This optimality report only applies to individual changes and to answer the question we will have to calculate 100\% Rule:

X1 increases in 1 unit, so: $1 / 4.5$ (allowable increase) $=0.22$ X2 decreases in 1 unit, so: $1 / 3$ (allowable decrease) $=0.33$

```
0.22+0.33=0.55 %
    <100%
```

Solution remains optimal

$$
Z=4^{*} 2+4^{*} 6=32
$$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
First, let us analyze the Variable Cells part of the table:

- The Final Value = Optimal Solution, thus replacing the optimal ($\mathrm{x} 1, \mathrm{X} 2$) in the objective function leads to $Z=3^{*} 2+5^{*} 6=36$

Variable Cells						
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$W\$4	S3 $\times 1$	2	0	4-3	$=1 \quad 4.5$	3
\$X\$4	S3 $\times 2$	6	0		-4 =1 1E+30	3
Constraints						
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2
\$Y\$8	S2 Total	12	1.5	12	6	6
\$Y\$9	S3 Total	18	1	18	6	6

Reduced Cost column is set to zero for both variables because both products are being produced (2 units of $X 1$ and 6 units of $X 2$).

However, there might be situations for which not producing one of the products is more profitable (Final Value $=0$). In such situations, the Reduced Cost = certain negative amount (for a maximization problem), which represent the reduction in profit that would be obtained if we insisted in producing one unit of that product

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:
Max $Z=3 \mathbf{x}_{1}+\mathbf{5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

Variable Cells								
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3		
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3		
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease	Upper Limit	Lower Limit
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2	$+\infty$	2
\$Y\$8	S2 Total	12	1.5	12	6	6	18	6
\$Y\$9	S3 Total	18	1	18	6	6	18	12

Increase in Z resulting of an Unit increase in the RHS of a constraint

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

$$
\begin{aligned}
\text { Optimal sol.: } & (x 1, x 2)=(0,6) \\
& Z=36
\end{aligned}
$$

Max $\quad \mathbf{Z}=\mathbf{3} \mathbf{x}_{\mathbf{1}} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$x_{1}, x_{2} \geq 0$

Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

This table allows us to say how much would profit increase (Z) without having to apply Simplex again as long as the change in the RHS of a constraint remains between its Upper and Lower Limits,
Increase in Z resulting because this means the Shadow Price will hold.

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

$$
\begin{aligned}
\text { Optimal sol.: } & (x 1, x 2)=(0,6) \\
& Z=36
\end{aligned}
$$

Max $\quad \mathbf{Z}=\mathbf{3} \mathbf{x}_{\mathbf{1}} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$x_{1}, x_{2} \geq 0$

Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

Variable Cells								
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3		
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3		
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease	Uppe Limit	Lower Limit
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2	+	2
\$Y\$8	S2 Total	12	1.5		$+5=176$	6	18	6
\$Y\$9	S3 Total	18	1	18	6	6	18	12

This table allows us to say how much would profit increase (Z) without having to apply Simplex again as long as the change in the RHS of a constraint remains between its Upper and Lower Limits, because this means the Shadow Price will hold.

Suppose we increase the RHS of constraint 2 by 5 (from 12 to 17):

$$
5 * 1.5=7.5 \text {, thus } Z=36+7.5=43.5
$$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

$$
\begin{aligned}
\text { Optimal sol.: } & (x 1, x 2)=(0,6) \\
& Z=36
\end{aligned}
$$

Max $\quad \mathbf{Z}=\mathbf{3} \mathbf{x}_{\mathbf{1}} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$x_{1}, x_{2} \geq 0$

Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

Variable Cells								
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3		
\$ \times \$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3		
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease	Upper Limit	Lower Limit
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2	$+\infty$	2
\$Y\$8	S2 Total	12	1.5		$5=7 \quad 6$	6	18	6
\$Y\$9	S3 Total	18	1	18	6	6	18	12

Increase in Z resulting of an Unit increase in the RHS of a constraint

This table allows us to say how much would profit increase (Z) without having to apply Simplex again as long as the change in the RHS of a constraint remains between its Upper and Lower Limits, because this means the Shadow Price will hold.

Suppose we decrease the RHS of constraint 2 by 5 (from 12 to 17):

$$
-5 * 1.5=7.5 \text {, thus } Z=36-7.5=28.5
$$

Sensitivity Analysis

Interpreting the Solver Sensitivity Report:

$$
\begin{aligned}
\text { Optimal sol.: } & (x 1, x 2)=(0,6) \\
& Z=36
\end{aligned}
$$

Max $\quad \mathbf{Z}=\mathbf{3} \mathbf{x}_{\mathbf{1}} \mathbf{+ 5} \mathbf{x}_{\mathbf{2}}$
Subject to:

$$
\begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Now, let us analyze the Constraints part of the table:

- The bottom table addresses the range of feasibility ie the range for the RHS of the constraints that allows the Shadow Price to remain unchanged

Variable Cells								
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease		
\$W\$4	S3 $\times 1$	2	0	3	4.5	3		
\$X\$4	S3 $\times 2$	6	0	5	$1 \mathrm{E}+30$	3		
Constraints								
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease	Upper Limit	Lower Limit
\$Y\$7	S1 Total	2	0	4	$1 \mathrm{E}+30$	2	$+\infty$	2
\$Y\$8	S2 Total	12	1.5	12	6	6	18	6
\$Y\$9	S3 Total	18	1		$+7=116$	6	18	12

This table allows us to say how much would profit increase (Z) without having to apply Simplex again as long as the change in the RHS of a constraint remains between its Upper and Lower Limits,

Increase in Z resulting of an Unit increase in the RHS of a constraint
because this means the Shadow Price will hold.

Suppose we decrease the RHS of constraint 3 by 7, from 18 to 11, please note that the Allowable Decrease is 6 making the RHS new value fall outside the Lower Limit. Therefore the Shadow Price is no longer valid and for that reason we can not tell what would happen to profit.

